lisc.collect_words

lisc.collect_words(terms, inclusions=None, exclusions=None, labels=None, db='pubmed', retmax=100, field='TIAB', usehistory=False, api_key=None, save_and_clear=False, logging=None, directory=None, collect_info=True, verbose=False, **eutils_kwargs)[source]

Collect text data and metadata from EUtils using specified search term(s).

Parameters
termslist of list of str

Search terms.

inclusionslist of list of str, optional

Inclusion words for search terms.

exclusionslist of list of str, optional

Exclusion words for search terms.

labelslist of str, optional

Labels for the search terms.

dbstr, optional, default: ‘pubmed’

Which database to access from EUtils.

retmaxint, optional, default: 100

Maximum number of articles to return.

fieldstr, optional, default: ‘TIAB’

Field to search for term within. Defaults to ‘TIAB’, which is Title/Abstract.

usehistorybool, optional, default: False

Whether to use EUtils history, storing results on their server.

api_keystr, optional

An API key for a NCBI account.

save_and_clearbool, optional, default: False

Whether to save words data to disk per term as it goes, instead of holding in memory.

logging{None, ‘print’, ‘store’, ‘file’}

What kind of logging, if any, to do for requested URLs.

directorystr or SCDB, optional

Folder or database object specifying the save location.

collect_infobool, optional, default: True

Whether to collect database information, to be added to meta data.

verbosebool, optional, default: False

Whether to print out updates.

**eutils_kwargs

Additional settings for the EUtils API.

Returns
resultslist of Articles

Results from collecting data for each term.

meta_dataMetaData

Meta data from the data collection.

Notes

The collection does an exact word search for the term given. It then loops through all the articles found for that term.

For each article, it pulls and saves out data (including title, abstract, authors, etc), using the hierarchical tag structure that organizes the articles.

Examples

Collect words data for two terms, limiting the results to 5 articles per term:

>>> results, meta_data = collect_words([['frontal lobe'], ['temporal lobe']], retmax=5)

Examples using lisc.collect_words

Words with Functions

Words with Functions