lisc.plts.counts.plot_clustermap¶
- lisc.plts.counts.plot_clustermap(data, x_labels=None, y_labels=None, attribute='score', transpose=False, method='complete', metric='cosine', cmap='purple', **kwargs)[source]¶
- Plot a clustermap of the given data. - Parameters:
- dataCounts or 2d array
- Data to plot, as a clustermap. 
- x_labelslist of str, optional
- Labels for the x-axis. 
- y_labelslist of str, optional
- Labels for the y-axis. 
- attribute{‘score’, ‘counts’}, optional
- Which data attribute from the counts object to plot the data for. Only used if the data input is a Counts object. 
- transposebool, optional, default: False
- Whether to transpose the data before plotting. 
- methodstr, optional, default: ‘complete’
- The linkage algorithm to use. See scipy.cluster.hierarchy.linkage for options. 
- metricstr or function, optional, default: ‘cosine’
- The distance metric to use. See scipy.spatial.distance.pdist for options. 
- cmap{‘purple’, ‘blue’} or matplotlib.cmap
- Colormap to use for the plot. If string, uses a sequential palette of the specified color. 
- **kwargs
- Additional keyword arguments to pass through to seaborn.clustermap. 
 
 - Notes - This function is a wrapper of the seaborn.clustermap plot function. - Examples - See the example for the - compute_score()method of the- Countsclass.
